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Summary

A wide variety of functional domains exist within human genes. Since different domains vary in their roles regarding
overall gene function, the ability for a mutation in a gene region to produce disease varies among domains. We
tested two hypotheses regarding distributions of mutations among functional domains by using (1) sets of single
nucleotide disease mutations for six genes (CFTR, TSC2, G6PD, PAX6, RS1, and PAH) and (2) sets of polymorphic
replacement and silent mutations found in two genes (CFTR and TSC2). First, we tested the null hypothesis that
sets of mutations are uniformly distributed among functional domains within genes. Second, we tested the null
hypothesis that disease mutations are distributed among gene regions according to expectations derived from the
distribution of evolutionary conserved and variable amino acid sites throughout each gene. In contrast to the mainly
uniform distribution of sets of silent and polymorphic mutations, sets of disease mutations generally rejected the null
hypotheses of both uniform and evolutionary-influenced distributions. Although the disease mutation data showed
a better agreement with the evolutionary-derived expectations, disease mutations were found to be statistically
overabundant in conserved domains, and under-represented in variable regions, even after accounting for amino
acid site variability of domains over long-term evolutionary history. This finding suggests that there is a non-
additive influence of amino acid site conservation on the observed intragenic distribution of disease mutations, and
underscores the importance of understanding the patterns of neutral amino acid substitutions permitted in a gene
over long-term evolutionary history.

Introduction

Over 900 disease-associated human genes have been
identified (Jimenez-Sanchez et al. 2001). Although these
genes are generally associated with specific functions,
different domains within a given gene perform differ-
ent roles related to the overall function of the protein
product. In fact, over 1,800 different putative types of
domains have been identified in human genes (Li et al.
2001). Since different regions within a gene vary in their
roles with respect to overall gene function, amino acid
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sites in different domains within a gene may vary in their
ability to produce a given disease phenotype if mutated.
For example, Maheshwar et al. (1997) noted multiple
recurrent missense mutations in only a single putative
GAP domain of TSC2 in unrelated tuberous sclerosis
patients, indicating that this gene region may be overall
more important than others for the production of the
disease phenotype. In contrast, mutations in the cys-
tic fibrosis transmembrane conductance regulator gene
(CFTR) resulting in cystic fibrosis have been reported
among all of the functional domains contained within it,
despite the fact that different regions play different roles
in the overall function of the gene product (Devidas &
Guggino, 1997; Welsh et al. 2000). Therefore, it is of use
to understand the intragenic distribution of mutations
within a disease-associated gene. This information may
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reveal regions that have the greatest influence on the
development of a given disease phenotype, and identify
regions that are likely to be over- or under-represented
in a disease mutation data set.

The objective of this project was to quantify and test
two hypotheses about the intragenic distribution of hu-
man disease mutations. First, we describe a test of the
null hypothesis that disease mutations are distributed
uniformly among regions within a gene and therefore
reflect a random mutational process. Second, we de-
scribe a test of the null hypothesis that disease muta-
tions are distributed among gene regions according to
distributions derived from an understanding of the pro-
portion of evolutionarily conserved and variable amino
acid residues (among species) within and among do-
mains. Recent literature clearly underscores the impor-
tance of understanding human disease mutations from
an evolutionary perspective (Botstein & Risch, 2003).
Therefore, this second test is necessary because there is
a known overabundance of disease mutations at evolu-
tionarily conserved amino acid sites (Greenblatt et al.
2003; Miller & Kumar, 2001; Mooney & Klein, 2002;
Notaro et al. 2000), thus illustrating the importance of
conserved residues in the proper functioning of protein
products.

Our two tests were applied to sets of disease muta-
tions found in 6 different disease genes: the cystic fi-
brosis transmembrane conductance regulator (CFTR),
glucose-6-phosphate dehydrogenase (G6PD), pheny-
lalenine hydroxylase (PAH), paired box 6 (PAX6),
the X-linked retinoschisis gene (RS1), and a gene as-
sociated with the development of tuberous sclerosis
(TSC2).

Table 1 Disease genes examined, numbers of mutations analyzed, and sources of the definitions of gene regions used for analyses

of mutations analyzed
Disease gene (disease/polymorphic/silent) Web address of mutation database Source for definitions of gene regions

CFTR 436/32/61 www.genet.sickkids.on.ca/cftr Bianchet et al. (1997)
G6PD 110a/-/- rialto.com/favism/mutat.htmb Au et al. (2000)
PAH 270/-/- www.mcgill.ca/pahdb/c Erlandsen & Stevens (1999)
PAX6 29/-/- www.hgu.mrc.ac.uk/Softdata/PAX6/d Prosser & van Heyningen (1998)
RS1 71/-/- www.dmd.nl/rs/rs.html http://www.dmd.nl/rs/rshome.html
TSC2 47/18/33 expmed.bwh.harvard.edu/ts/ Maheshwar et al. (1997)
a48 type I mutations, 62 types II, III, and IV mutations.
bVulliamy et al. (1997).
cScriver et al. (2000).
dBrown et al. (1998).

Data Acquisition

We obtained data for unique disease-associated single
base pair replacement mutations observed in 6 different
disease genes from on-line databases (Table 1), and fur-
ther obtained human and orthologous metazoan cDNA
sequences for each gene (Fig. 1). Databases for CFTR

Figure 1 Model phylogenetic trees used to determine the
number of amino acid substitutions that have occurred at each
site in each gene throughout evolutionary history. GenBank
accession numbers for sequences used in analyses are as follows:
CFTR: human (NM 000492), baboon (AF162401), rhesus
monkey (AF013753), cow (M76128), sheep (U20418), rabbit
(U40227), mouse (M69298), killifish (AF000271), salmon
(AF155237); G6PD: human (NM 000402), mouse (Z11911),
rat (NM 017006), hamster (AF044676), Macropus (U13899),
pufferfish (X83611), Drosophila (AH002543), C. elegans
(Z73102); PAH: human (K03020), mouse (X51942), rat
(NM 012619), Drosophila (M32802), C. elegans (AF119388);
PAX6: human (12736585), mouse (X63963), rat
(NM 013001), chicken (D87837), Xenopus (U77532), zebrafish
(AF061252), Oryzias (AJ000938), C. elegans (U31537); RS1:
human (AF014459), mouse (NM 011302), Fugu (AF146687);
TSC2: human (X75621), mouse (NM 011647), rat (D50413),
Drosophila (AF172995).
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and TSC2 also contained sufficient quantities of individ-
ual polymorphic replacement (presumably not disease
associated) and silent (those not altering the encoded
amino acid) mutations for use in separate analyses. In
total, we analyzed 963 disease-associated replacement
mutations, 50 polymorphic replacement mutations, and
94 silent mutations (Table 1). Furthermore, in the case
of G6PD, information on the severity of the disease
phenotype (Vulliamy et al. 1997) permitted us to sep-
arately analyze sets of severe (type I) mutations result-
ing in chronic non-spherocytic hemolytic anemia and
milder (type II, III, and IV) mutations resulting only in
enzyme deficiencies. Definitions of the specific amino
acid residues contained in domains of each gene were
obtained from the sources listed in Table 1 (see also
Methods in Miller & Kumar, 2001). Not all the muta-
tion databases examined contained information on the
observation frequencies of a given mutation. Therefore,
we included each mutation only once in our analyses to
ensure that comparable data were present for each gene.
In addition, the elimination of frequency information
prevented bias in our results towards the properties of
commonly observed mutations over those less frequently
reported for a specific genetic disease.

Statistical Methods and Analysis Results

Testing for a Uniform Distribution
of Mutations Among Gene Regions

In this analysis we tested the null hypothesis that sets of
disease mutations are uniformly distributed among gene
regions. This null hypothesis is based on the assump-
tion that point mutations occur at random throughout
disease genes. Since gene regions vary in coding se-
quence lengths and because the number of nucleotide
sites that experience replacement mutations is much
higher than those for silent (synonymous) mutations
due to the properties of the genetic code, it is neces-
sary to account for these factors when comparing num-
bers of observed mutations among domains. Thus, for
each gene, we first calculated the number of potential
replacement sites, Rj, for each of the j domains of the
human gene sequence and R = �Rj, the total number
of replacement sites in the gene. A convenient mea-
sure of Rj can be obtained using the method of Nei &

Gojobori (1986), which accounts for both the length
of the gene region and the mutability of codons within
the region. If gene region j contains Rj replacement
sites, then on average, we expect to observe the fraction
Rj/R of the D total human mutations within region j.
Therefore, the expected number of human mutations in
region j under the assumption of an underlying uniform
(on replacement sites) mutational process is

Dexpected
j = (Rj /R) × D, (1)

where D = �Dobserved
j and Dobserved

j is the observed
number of mutations within the jth gene region. A
global test of this null hypothesis can be performed by
relating Dobserved

j and Dexpected
j as

X2 =
∑

j

(
Dobserved

j − Dexpected
j

)2/
Dexpected

j (2)

and testing the X2 statistic using a chi-square distribution
with j-1 degrees of freedom. However, in the course of
conducting this study, we frequently encountered situ-
ations where small expected counts for a domain ap-
peared to overly influence the analysis outcome. Small
expected counts can artificially inflate X2 relative to the
given underlying degrees of freedom for the analysis
and result in the liberal rejection of the null hypothesis
(Sokal & Rohlf, 1995). Therefore, we relied on a ran-
domization procedure to evaluate the significance of the
X2 statistic. Here, we randomly (under a uniform dis-
tribution) allocated mutations among sites in the gene
and quantified the global deviation of the randomized
values from expected as

X2
RND =

∑

j

(
DRND

j − Dexpected
j

)2/
Dexpected

j , (3)

where DRND
j is the number of randomly allocated mu-

tations to region j. This process generates a simulated
empirical null (H0) distribution of X2, which approxi-
mates the true distribution. The P-value for this global
randomization test is the proportion of randomization
replicates where X2

RND ≥ X2
Observed. Our use of this

randomization-based procedure produced results that
are more conservative in rejecting the null hypothe-
sis than the asymptotic use of the chi-square distribu-
tion (results not shown). Therefore results from global
randomization tests conducted with 10,000 replicates
are presented throughout the remainder of this paper.
Furthermore, in the course of performing this global
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Table 2 Testing null hypotheses concerning the distribution of human mutations among functional domains

Reject null hypothesis?

Data set Uniform distribution Evolutionary-influenced distribution

CFTR
Disease replacement Yes (X2 = 69.10, P < 0.001) Yes (X2 = 50.76, P < 0.001)
Polymorphic replacement No (X2 = 12.02, P = 0.160) n/a
Silent No (X2 = 5.15, P = 0.730) n/a

TSC2
Disease replacement Yes (X2 = 9.13, P = 0.020) Yes (X2 = 10.955, P = 0.007)
Polymorphic replacement No (X2 = 2.01, P = 0.372) n/a
Silent No (X2 = 0.91, P = 0.664) n/a

G6PD replacement
Type I No (X2 = 5.198, P = 0.139) No (X2 = 2.66, P = 0.232)
Type II, III, IV No (X2 = 3.668, P = 0.218) n/a

PAH
Disease replacement Yes (X2 = 33.46, P < 0.001) Yes (X2 = 11.66, P = 0.002)

PAX6
Disease replacement Yes (X2 = 24.244, P < 0.001) Yes (X2 = 12.58, P = 0.003)

RS1
Disease replacement Yes (X2 = 15.20, P = 0.002) No (X2 = 3.53, P = 0.060)

randomization test, we could also apply a domain-
specific test to identify the specific gene regions that
deviate from expectations. Details of this randomization
procedure are given in Appendix I.

The test described above can also be performed for
polymorphic replacement mutations and silent muta-
tions observed in databases. In the case of the latter, it is
then appropriate to substitute S and Sj, the number of
silent sites in the entire gene, and each gene region, for
R and Rj in the above calculations.

An important implicit assumption of the analysis de-
scribed above is that the data used in analyses are ob-
tained from the complete genotyping of each disease
gene in question. Indeed, if mutation database contribu-
tors routinely only examine specific regions of the genes
in question, then significant deviations from uniform
expectations may result. However we note, in the case
of TSC2 and CFTR, that databases contain sufficient
numbers of silent mutations for analyses (Table 1). Thus,
assuming that all silent mutations detected by researchers
are submitted to databases for these genes, we expect to
observe uniform distributions of mutations among gene
regions if there is no significant ascertainment bias due
to the unequal screening of gene regions. Although this
type of confirmatory analysis was not possible with data
from the remaining four genes, our analyses of these
data nonetheless produced clear results that are consis-

tent with those observed in CFTR and TSC2 (see anal-
ysis results below). In addition, our analyses excluded
mutation frequency data, which minimizes the effects of
any ascertainment bias that might exist for commonly
observed variants (see Miller & Kumar, 2001).
Analysis Results: In global tests of the uniform distri-
bution hypothesis, the sets of polymorphic and silent
mutations from CFTR and TSC2 did not reject the
null hypothesis (Table 2). This suggests that these sets
of mutations are randomly distributed among gene re-
gions and, in the case of silent mutations discovered in
CFTR and TSC2, provides evidence for the presence
of low (or no) ascertainment bias in the data sets. How-
ever, while the global analysis did not reject the null hy-
pothesis for CFTR, the domain-specific test indicated
that there were more polymorphic replacement muta-
tions observed in the first nucleotide-binding domain
(NBD1) of the gene than expected by chance alone
(Fig. 2, P = 0.026). An explanation for this observa-
tion is shown in Table 3. We found that when NBD1
is treated separately and observed and expected values
from the other domains are pooled for analyses, that
there is in fact a significant overabundance of polymor-
phic replacement mutations in this gene region. Often,
when analyzing such data and an overall significant ef-
fect is found, it is then common procedure to pool sets
of test categories to determine which are responsible for
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the significant deviation (Sokal & Rohlf, 1995). Thus,
the randomization tests described here have the ability
to identify gene regions that, if analyzed in compari-
son with pooled observations from the other regions of
the gene, would result in a significant X2 value when
evaluated with fewer degrees of freedom.

The analysis of disease-associated replacement muta-
tions revealed that most sets deviate from uniform ex-

Figure 2 Observed (black bars) and expected (grey bars)
numbers of human mutations for (A) polymorphic replacement
mutations in CFTR, (B) polymorphic replacement mutations in
TSC2, (C) silent mutations in CFTR, and (D) silent mutations
in TSC2. Expected values were obtained under the null
hypothesis that mutations are uniformly distributed among gene
regions. See Fig. 3 caption for definitions of gene region name
abbreviations. Gene regions are ordered on the abscissa from
most conserved (left side) to least conserved (right side).
Asterisks indicate observed counts for gene regions that were
found to significantly differ from expected values derived under
the null hypothesis of a uniform distribution of mutations
among gene regions (P < 0.05).

Table 3 Examples of domain-specific
randomization test results that gave sig-
nificant P-values when the null hypoth-
esis was not rejected in the global analysis

Gene regiona Observed Expected (Observed-Expected)2/Expected

CFTR
NBD1 only 10 5.319 4.118
Rest of the domains 22 26.681 0.821
Total 32 32 X2 = 4.94, 1 df, P = 0.026

G6PD
β+α domain 36 29.400 1.482
Rest of the domains 12 18.600 2.341
Total 48 48 X2 = 3.82, 1 df, P = 0.0505

aThe gene region with the significant P-value from domain-specific analysis was treated
separately, while observed and expected counts for the other regions were pooled. Thus,
in these cases, the analyses give significant or nearly significant results when X2 values
were considered with fewer degrees of freedom.

pectations, indicating that disease mutations are over-
abundant in some domains and underrepresented in oth-
ers. X2 values from global tests were highly significant
for CFTR, TSC2, PAH, PAX6, and RS1 (Table 2),
and use of the domain-specific randomization proce-
dure showed that multiple gene regions deviated from
uniform expectations (Fig. 3). Interestingly, global anal-
ysis of the set of less severe G6PD mutations (types II,
III, and IV) did not reject the null hypothesis, nor did the
domain-specific randomization procedure identify any
gene regions with observed counts different from uni-
form expectations (Fig. 3c). Likewise, the global analysis
of G6PD type I mutations suggested that these amino
acid changes were uniformly distributed among gene
regions (Table 2). However, domain-specific tests did
identify the β(α gene region as having significantly more
mutations than expected by chance alone (P = 0.026,
Fig. 3b; see also Table 3).

Testing for the Distribution of Human
Mutations using the Intragenic Distribution
of Evolutionarily Conserved and Variable
Amino Acid Residues

It has been shown previously that disease mutations
are generally not distributed at random among amino
acid sites within genes (for example, Botstein & Risch,
2003; Greenblatt et al. 2003; Miller & Kumar, 2001;
Mooney & Klein, 2002; Notaro et al. 2000). In-
stead, disease-causing mutations are generally overabun-
dant at evolutionarily conserved sites. Such patterns
illustrate the importance of those conserved residues
for the proper function of the protein product, as
amino acid-altering mutations at these sites result in
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Figure 3 Observed and expected numbers of disease associated
mutations in each region of the six genes examined: (A) CFTR,
(B) G6PD type I mutations, (C) G6PD type II, III, and IV
mutations, (D) PAH, (E) PAX6, (F) RS1, (G) TSC2. Black bars
indicate the observed number of human mutations in each gene
region, light grey bars indicate the expected number of human
mutations based on an evolutionarily influence model, and dark
grey bars indicate expected numbers assuming a uniform
distribution among gene regions. Expected values under the
evolutionarily influenced model were not obtained for G6PD
type II, III, and IV mutations (see text for details).
Abbreviations of gene region names are as follows: CFTR:
TMD1 (transmembrane domain 1), TMD2 (transmembrane
domain 2), NBD1 (nucleotide binding domain 1), NBD2
(nucleotide binding domain 2), RD (R-domain),
UND1-UND4 (four independent undesignated regions);
G6PD: 5′ Ind (5′ undesignated region), Coenz (coenzyme
domain), B + A (β+α domain); PAH: TET (tetramerization
domain), REG (regulatory domain), CAT (catalytic domain);
PAX6: HD (homeodomain), PD (paired domain), PST
(proline-serine-threonine domain), LNK (link domain); RS1:
PDR (pre-discoidin region), DD (discoidin domain); TSC2: 5′

UND (5′ undesignated region), GAP (GAP-like domain), 3′

UND (3′ undesignated region). Gene regions are ordered on
the abscissa from most conserved (left side) to least conserved

Figure 3 (continued) (right side). Asterisks indicate observed
counts for gene regions that were found to differ significantly
from expected values derived under the null hypothesis of a
uniform distribution of mutations among gene regions (P <

0.05). # and ∗ indicate observed counts that significantly differ
from expected values derived under the null hypothesis that
mutations are distributed based on evolutionary expectations, or
are uniformly distributed, respectively (P < 0.05).

phenotypic changes of sufficient severity to come to the
attention of clinicians.

In the analysis that follows, we consider the possibil-
ity that if disease mutations as a whole are overabun-
dant at conserved sites, then deviations of disease mu-
tations from uniform/random expectations may be due
to the fact that some regions of the gene have been dif-
ferentially conserved throughout long-term evolution-
ary history. Thus, in this analysis, we are testing the
null hypothesis that the observed disease mutations are
distributed among gene regions relative to the abun-
dance of evolutionarily conserved and variable amino
acid residues in each gene region.

Consider an amino acid sequence alignment of length
A. Through the use of the algorithm of Fitch (1974), we
can obtain for each site in the gene an estimate of the
minimum number of amino acid substitutions, i, that
have occurred throughout evolutionary history given a
known phylogenetic tree for all of the sequences in the
alignment (Fig. 1). This procedure permits us to quantify
the amino acid variability at a site while simultaneously
accounting for the shared ancestral amino acid substi-
tutions that appear within descendent phylogenetic lin-
eages, i.e., the statistical non-independence of the in-
terspecific sequence data used for analyses; (Felsenstein,
1985). It is important to estimate i for each site using an
alignment containing as many species as possible, and
including divergent species (e.g., distantly related ver-
tebrates or animals). This is to ensure that a sufficient
amount of evolutionary variability exists at the amino
acid level to conduct a powerful test (see below). For the
six genes examined in this study, these parsimony-based
estimates of amino acid site rate variability were highly
correlated with comparable maximum-likelihood based
estimates (r = 0.987; Miller & Kumar, 2001). Using
this information, we classified amino acid sites based on
their amino acid variability, and obtained counts of sites
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of type i in the gene, thus obtaining an estimated fre-
quency of invariant sites (a0: type 0 sites), once-changed
sites (a1: type 1 sites), and sites that have changed i times
(ai: type i sites) over the course of evolutionary history.
We then mapped the positions of the D human disease
mutations to the interspecific alignment and obtained
counts of the number of human disease mutations that
occur at each type of amino acid site. Therefore, there
will be Dobserved

0 human mutations among the a0 type
0 sites, Dobserved

1 human mutations among the a1 type 1
sites, and Dobserved

i human mutations among the ai type
i sites, where D =

∑i
0 Dobserved

i . Of the six disease mu-
tation data sets examined in this study, all (with the ex-
ception of type II, III, and IV G6PD variants) show a
significant overabundance of disease mutations at amino
acid sites that were perfectly conserved (i.e., type 0 sites)
among the taxa used to generate interspecific alignments
(Fig. 1., Miller & Kumar, 2001).

Next, within each gene region j, we tabulated the
estimated number of sites, aij, that have undergone i
amino acid substitutions based on the phylogenetic anal-
ysis of the interspecific sequence alignments described
above. Since gene region j contains aij of the total ai

sites that have experienced i substitutions, we expected
gene region j to have (aij/ai) × Dobserved

i of the Dobserved
i

mutations found at sites that have evolved i times based
on the analysis of interspecific data. Consequently, un-
der the null hypothesis that the relative importance of
conserved versus variable amino acid sites is equivalent
among gene regions, we have the expected value

Dexpected
j

=
i∑

0

(
(a ij/a i ) × Dobserved

i

)
(4)

of total disease mutations for gene region j. Thus, we
can relate Dexpected

j and Dobserved
j in a global test for de-

viation from the evolutionary expectations using equa-
tion 2 above. However, there are two types of prob-
lems that arise. First, because the proportion of dis-
ease mutations found at each rate variability category
is estimated from the data, the distribution of the test
statistic (X2) becomes more spread out than the actual
chi-square distribution (Greenwood & Nikulin, 1996;
Sokal & Rohlf, 1995). Therefore it is inappropriate sim-
ply to perform an asymptotic chi-squared test with j-1
degrees of freedom. Furthermore, as with the test for
a uniform distribution of mutations among domains,

we also frequently encountered situations where do-
mains have small-expected counts. Therefore, we can
perform global and domain-specific randomization tests
in lieu of the conventional global chi-square analysis de-
scribed above. Details of these analyses are presented in
Appendix II.

Since we have modified expectations for each gene
region to reflect a potential evolutionary influence on
distributions, there is no need to perform this anal-
ysis if, when using the site-by-site analysis procedure
(i.e., Miller & Kumar, 2001), no overall excess of mu-
tations is detected at conserved amino acid residues. In
these cases, use of the evolutionary-influence analysis
described above will produce expected values similar
to those obtained from the test for a uniform distri-
bution of mutations among gene regions (equation 2).
Therefore, this analysis was not performed on silent and
non-disease associated mutations in CFTR, TSC2, or
on types II, III, and IV mutations in G6PD, which have
already been shown to be randomly distributed among
individual amino acid sites with respect to the level of
conservation of each residue over long-term evolution-
ary history (Miller & Kumar, 2001).

Relationship Between Expected Values
Obtained from Uniform and Evolutionary
Models

While the statistical analyses described above were ex-
plicitly performed on observed and expected counts of
mutations from each gene region, it is conceptually eas-
ier to visualize the relationship between the expected
values used in each test by expressing expected counts
for a domain as a proportion of the number of po-
tential replacement sites within the gene region. Here,
we calculated the number of replacement sites (Nei &
Gojobori, 1986) in the gene region from the reference
human sequence to account for variation in the length
and mutability of coding regions for each functional do-
main. Fig. 4 shows the relationship between expected
values from each test, normalized by the number of
replacement sites in each gene region, and the aver-
age number of amino acid substitutions per amino acid
site within different CFTR gene regions over long-term
evolutionary history (a convenient measure of the aver-
age degree of conservation of amino acid residues within
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Figure 4 Scatter-plot illustrating the relationship between
expected values obtained from the test for a uniform
distribution (dashed line) and evolutionarily-influenced
distribution (squares indicate actual expected values and the
dotted line is the best fit regression line through those points).
Expected values are plotted as a proportion of the number of
replacement sites within the gene region to account for
variation in the mutability and length of each region. In the test
for a uniform distribution among gene regions, expected values
are equivalent on a per-replacement site basis in all of the gene
regions. In contrast, expected values for the
evolutionary-influenced distribution test decrease in less
conserved gene regions to account for the overabundance of
disease mutations at conserved sites. The expected values shown
here were obtained for CFTR disease-associated mutations.

a domain). On a per replacement site basis, we expected
to observe equal numbers of mutations in each gene re-
gion (dashed line) under the null hypothesis of a uniform
distribution of disease mutations. In contrast, if expected
counts are modified to account for an overabundance of
disease mutations at invariant sites, we expected to see
more disease mutations within conserved gene regions
as opposed to those that have a greater proportion of
sites that vary among species (dotted line). Based on
these factors, the correlation between the average num-
ber of amino acid substitutions experienced per site in
a gene region throughout evolutionary history and the
expected numbers of disease mutations for a given gene
region based on evolutionary modifications (computed
using equation 4) was high for CFTR (r = −0.979)
(Fig. 4; open square). A similar result was obtained for
the remaining genes examined (G6PD type I muta-
tions: r = −0.995; PAH: r = −0.999; PAX6: r =
−0.998; RS1: r = −1.000; TSC2: r = −0.999).
Analysis Results: In global tests for an evolutionarily-
influenced distribution, the null hypothesis was rejected
for the sets of disease mutations in CFTR, TSC2, PAH,

and PAX6 (Table 2, Fig. 3). In contrast, the null hypoth-
esis was not rejected for G6PD type I mutations or RS1
(Table 2, Fig. 3), indicating that mutational distributions
among domains were highly influenced by the level of
conservation of sites within those genes. However, the
P-value in the case of RS1 was approximately signif-
icant (X2 = 3.53, P = 0.060) at the 5% level. When
the randomization-based procedure was used to identify
gene regions that significantly deviate from evolutionary
expectations, the test indicated that in all cases, except
for G6PD type I mutations, there were one or more
regions that significantly deviated from expected values
(Fig. 3). Thus, while the global test for RS1 did not
produce a significant result at the 0.05 level (Table 2),
the randomization procedure in fact suggested that each
gene region deviated from expectations (P = 0.026),
with the pre-discoidin region (PDR) showing a deficit
of mutations, and the discoidin domain (DD) containing
more mutations than expected (Fig. 3).

Discussion

With the exception of the two sets of G6PD muta-
tions, global analyses of all remaining sets of disease
mutations rejected the null hypothesis of a uniform
distribution among gene regions (Table 2). However,
the domain-specific randomization procedure suggested
that the conserved β+α region of G6PD has more
mutations than expected under the uniform distribu-
tion model (Fig. 3). Thus, our combined analyses in-
dicated that the observed distributions of disease muta-
tions (except for types II, III, and IV G6PD mutations)
are not simply a set of randomly occurring mutations.
Furthermore, global analyses rejected the null hypoth-
esis of an evolutionarily influenced distribution for the
sets of disease mutations found in CFTR, TSC2, PAH
and PAX6 (Table 2), and use of the domain specific
randomization procedure indicated that both gene re-
gions of RS1 in fact deviated from evolutionary expec-
tations (Fig. 3). Although statistical analyses generally
rejected the evolutionarily influenced distribution hy-
pothesis, with the exception of TSC2, X2 values for
the global tests of an evolutionarily influenced distribu-
tion were much lower than for the uniform distribu-
tion model (Table 2), and indicated a better fit of the
data to the evolutionary model. To illustrate this, Fig. 5
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Figure 5 Scatter plots illustrating the relationship between the
observed numbers of disease mutations found in a gene region
(expressed on a per-replacement site basis) and the average
number of amino acid substitutions per site. Circles indicate
actual data points while the solid line is the best-fit regression
line through those points. The dashed lines and dotted lines
indicate expected values (also expressed on a per-replacement
site basis) obtained under the assumptions of uniform and
evolutionarily-influenced distributions, respectively.

shows the relationship between the observed number
of disease mutations (expressed as a proportion of the
number of replacement sites) and the average number
of amino acid substitutions per site within a gene re-
gion for the six data sets that were appropriate for anal-
ysis with the evolutionary-influence model. Except for
TSC2, the emergent pattern was consistent with ex-
pectations from the evolutionary-influence model, as
there are more mutations on a per-replacement site ba-
sis within conserved regions than highly variable ones.
This suggests that the use of an evolutionary perspective
can be an important first step towards understanding the
intragenic distribution of disease mutations.

Examination of Figs 3 and 5 reveals a common trend
among the majority of the genes analyzed. Namely, in

the cases of CFTR, G6PD type I mutations, PAH, and
RS1, there is a strong tendency for the observed num-
ber of mutations to be greater than evolutionary ex-
pectations in conserved domains (left side of X-axes in
Figs 3 and 5), while the observed number of mutations
in less conserved regions (right side of X-axes in Figs 3
and 5) tends to be lower than values obtained based on
the evolutionary model. These analyses provide evi-
dence that the relative importance of conserved and
variable sites for the development of disease is not com-
parable among domains. More specifically, our results
indicate that the numbers of evolutionary conserved
and variable amino acid residues within the gene region
non-additively influence the number of disease muta-
tions found within a domian. Perhaps, of the full com-
plement of random mutations that may possibly be iden-
tified in a gene, mostly those found in conserved gene
regions produce disease phenotypes. Replacement mu-
tations in less-conserved regions, despite containing
some fully conserved residues, may have a less severe
effect on an individual’s phenotype, and therefore not
be detected in routine studies of disease patients.

An exception to this pattern is apparent from the anal-
ysis of PAX6. This gene is an important regulator of the
development of the central nervous system (Callaerts
et al. 1997; Prosser & van Heyningen, 1998), and mis-
sense mutations in the homeodomain (HD), a DNA
binding region, are significantly underrepresented rel-
ative to both uniform and evolutionary-influenced ex-
pectations (Figs 3E and 5). This gene region, however,
is the most conserved of all of the domains analyzed in
this study, displaying only four variable amino acid sites
among eight species ranging from humans to C. elegans;
interspecific variation was observed only in the most dis-
tantly related species examined. The apparent deficit of
mutations in this region may reflect the critical function
of the domain, as replacement mutations to this region
may in fact be lethal and rarely come to the attention
of clinicians. Alternately, this finding may suggest that
replacement mutations in the HD do not produce the
degenerative eye disorders typically attributed to PAX6
mutations (Prosser & van Heyningen, 1998), and instead
produce other deleterious disease phenotypes that have
not yet been extensively studied.

Our analysis of disease-associated TSC2 mutations
yielded results unlike those for any of the other genes
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examined (Table 2, Fig. 3). Here, use of the domain-
specific randomization procedure suggested that the ob-
served number of mutations in the highly conserved
GAP domain was not significantly different from ei-
ther uniform or evolutionary expectations. However,
counts of mutations in the less conserved 5′ and 3′

undesignated regions were significantly different from
expected values under both models (Fig. 3G). Inter-
estingly, based on the overall X2-values from global
tests, the evolutionary-based model was not a better
descriptor of the distribution of mutations among re-
gions of this gene. The exceptional pattern observed in
this gene relative to the others examined may be due to
the fact that, currently only a single functional domain
has been identified in TSC2 and, overall very little is
known about the true function of the full gene product
(Cheadle et al. 2000). However, comparative se-
quence analysis of human and pufferfish TSC2 se-
quences has revealed additional regions of high
conservation (Maheshwar et al. 1997), suggest-
ing the presence of additional functional do-
mains. At this time, however, no known homolo-
gies to other functional domains have been found
(Cheadle et al. 2000). Therefore, we grouped all undes-
ignated amino acids at the 5′ and 3′ ends of the GAP-like
domain to create the three gene regions used for analysis
purposes. Future re-analysis of the TSC2 mutation data
from this region-by-region perspective may reveal pat-
terns more similar to those observed in the other genes
examined, as more detailed information on functional
regions of the gene becomes available.

Results of global analyses indicated that the sets of
polymorphic replacement and silent mutations in CFTR
and TSC2 generally fit the null hypothesis of a uniform
distribution among domains (Table 2, Fig. 2). Likewise,
less severe type II, III, and IV mutations in G6PD,
which are not overabundant at conserved sites (Miller &
Kumar, 2001), were uniformly distributed among gene
regions (Table 2, Fig. 3c). It should be noted that the bi-
ological significance of the uniform distribution is not
equivalent for both types of mutations. In the case of
silent mutations, the uniform distribution reflects the
random mutational process within the gene, as these
types of mutations may occur in any location without al-
tering an individual’s phenotype. However, the uniform
distribution of polymorphic replacement mutations may

point to the presence of slightly deleterious mutations
within human populations. Since gene regions that have
varied little throughout evolutionary history provide ev-
idence for domains that are most critical for proper pro-
tein function, presumably only replacement mutations
found in variable gene regions are likely to be tolerated
due to relaxed selective constraints. This pattern may
possibly be due to the fact that observation frequencies
of these polymorphic mutations were not available from
databases. Perhaps, of the human polymorphic variants,
those mutations found in the less conserved gene re-
gions are far more common than those seen in conserved
domains.

While the global analysis indicated that polymorphic
replacement mutations in CFTR were uniformly dis-
tributed, our use of domain-specific randomization tests
suggested that the CFTR database contained a slight
overabundance of polymorphic mutations in the most
conserved domain of that gene (NBD1; Fig. 2a). This
gene region also contains the most commonly observed
disease-associated CFTR mutation, 	F508 (Welsh et al.
2000). If large numbers of studies of non-affected in-
dividuals have focused solely on exons containing this
mutation, then replacement mutations in this functional
domain may in fact be over-represented in databases as
a result of unequal screening of gene regions. However,
assuming diligent reporting of all silent mutations dis-
covered in this gene during such screenings, we would
also expect to observe more silent mutations within
NBD1 as well, which was clearly not the case (Fig. 2c).
Alternately, the slight overabundance of polymorphic
replacement mutations in NBD1 may be due to
Darwinian natural selection. For example, Pier et al.
(1998) suggested that there may be a selective advantage
for 	F508 in terms of an increased resistance to infec-
tion by Salmonella typhi. Further, it has been suggested
that individuals heterozygous for 	F508 may have a
generalized resistance to diarrheal diseases (Baxter et al.
1988; Guggino, 1999) or reduced incidence of bronchial
asthma (Schroeder et al. 1995). Possibly some of the
amino acid-altering polymorphic mutations found in
NBD1 have selective advantages. Such benefits would
cause the frequencies of these allelic variants to increase
in populations faster than neutral amino acid changes,
and hence they would be observed more often in routine
CFTR genotyping studies.
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Appendix I

A Randomization Test for Identifying Gene
Regions that Contain Different Numbers of
Mutations than Expected Under the Null
Hypothesis of a Uniform Distribution
Among Domains

A simple randomization procedure can be used to iden-
tify specific gene regions that deviate from uniform ex-
pectations. An algorithm for performing this analysis is
as follows:

1. Obtain a test statistic for gene region j, which can
be simply calculated as the difference between the
observed and expected values for region j. Thus, the
test statistic for region j is Tj = Dobserved

j − Dexpected
j ,

with Dobserved
j being the observed number of mu-

tations in region j and Dexpected
j calculated as in

equation 1.
2. Initialize a counter for each gene region, Kj = 0.
3. Create an index vector, X, of length A, where A is

the number of amino acid sites in the entire gene.
Within this array, associate a1 positions to gene re-
gion 1, a2 positions to gene region 2, . . . , where aj

is the number of amino acid sites within region j.
A diagrammatic representation of X is presented in
Fig. 6.

4. For each of the specified number of randomization
replicates m (m = 1,000 or more) carry out the fol-
lowing:
(i) Using a uniform random number generator, ran-

domly assign D mutations to the elements of X,
where D is the total number of mutations in the
data set.

(ii) Calculate DRND
j , the number of randomly as-

signed mutations to each region j, by recording
the number of mutations found in the appropri-
ate aj elements of X.

Figure 6 Diagrammatic representations of the arrangement of
positions within sampling vector X, which was used to (A)
determine which gene regions deviated from uniform
expectations, and (B) determine which gene regions deviated
from evolutionarily-influenced expectations. In panel A, X is
subdivided into j regions (representing domains), each
containing aj of the A total amino acid residues in the gene
being examined. In panel B, X is subdivided into each of i
regions to reflect the sets of amino acid sites in the gene that
have undergone i amino acid substitutions over the course of
evolutionary history. Each Xi is further subdivided into j
sub-regions denoting the abundance of type i sites in each of the
j gene regions. See appendices for further details.

(iii) Calculate new test statistics for each of the j gene
regions as TRND

j = DRND
j − Dexpected

j .
(iv) For each gene region j, increment the counter

Kj under the following conditions:

if Tj > 0 and TRND
j ≥ Tj

or

if Tj < 0 and TRND
j ≤ Tj .

Thus, this analysis is 1-tailed for each gene re-
gion, as we are estimating the probability of ob-
serving both differences and signs of observed
and expected values as large or larger than ran-
dom expectations.

5. The Monte-Carlo P-value for region j is Pj = Kj/m.

Appendix II

Randomization Tests for Evaluating
Evolutionary-Influenced Distribution
Hypotheses

As with the test for a uniform distribution of mutations
among gene regions (Appendix I), we can perform a
randomization test to determine which gene regions sig-
nificantly deviate from evolutionary expectations. The
analysis proceeds as follows:

1. Obtain a test statistic for each gene region, which is
calculated as the difference between the observed and
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expected values for region j. Thus, the test statistic for
region j is Tj = Dobserved

j − Dexpected
j , with Dobserved

j

being the observed number of mutations in region j
and Dexpected

j calculated as in equation 4.
2. Initialize a counter for each gene region, Kj = 0.
3. Create an index vector X of length A, where A is

the number of amino acid sites in the gene. Within
this array, associate the first a0 positions with sites
of type 0, the next a1 positions with sites of type
1, . . . , and the final ai positions with sites of type
i, where ai is the number of amino acid sites in the
gene that have undergone i substitutions through-
out evolutionary history. We will refer to the set
of positions in X associated with sites of type i
as Xi. Next, further subdivide each Xi to reflect
the numbers of type i sites found within region j.
Thus, within Xi, we indicate j separate sub-regions,
each encompassing aij of the ai total sites of type i
found among the j gene regions. We refer to the
set of positions in Xi associated with gene region j
as Xij. A diagrammatic representation of X is given
in Fig. 6b.

4. For each of the specified number of randomization
replicates m (m = 1,000 or more) carry out the
following:
(i) Using a uniform random number generator, ran-

domly assign D0 mutations to region X0 of X,
D1 mutations to region X1 of X, . . . , and Di

mutations to region Xi of X.
(ii) Record the number of randomly assigned mu-

tations to gene region j, DRND
j , by noting the

number of random mutations in X associated
with region j.

(iii) Calculate new test statistics for each of the
j gene regions as TRND

j = DRND
j − Dexpected

j ,

with Dexpected
j calculated from equation 4.

(iv) For each gene region j, increment Kj under the
following conditions:

if Tj > 0 and TRND
j ≥ Tj

or

if Tj < 0 and TRND
j ≤ Tj .

5. The Monte-Carlo P-value for region j is Pj =
(Kj)/m.

As with the test for a uniform distribution of muta-
tions among gene regions (Appendix I), this analysis is
1-tailed for each gene region, since we are estimating
the probability of observing both differences and signs
of observed and expected values as large or larger than
evolutionary expectations. Furthermore, in the course
of performing this region-by-region analysis we can also
perform a global randomization test by calculating X2

RND

for each of the randomization replicates and evaluating
the significance of X2

observed in a manner similar to that
described in the text.
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